معادلات دیفرلنسیل فازی تحت مشتق پذیری تعمیم یافته قوی و روش های عددی برای معادلات دیفرلنسیل فازی
thesis
- دانشگاه تربیت معلم - تبریز - دانشکده علوم پایه
- author یاسر حسن پور مالدهی
- adviser مجتبی رنجبر
- Number of pages: First 15 pages
- publication year 1390
abstract
در این پایان نامه معادلات دیفرلنسیل فازی را تحت مشتق پذیری تعمیم یافته قوی مطالعه می کنیم. معادلات دیفرانسیل فازی را با چهار روش عددی حل می کنیم. این چهار روش شامل ، روش اویلر ، دو گامی ، k گامی و رانگه-کوتا ضمنی می باشد. همگرایی و پایداری این چهار روش را با جزئیات اثبات می کنیم.
similar resources
مشتق تعمیم یافته و معادلات دیفرانسیل فازی
?معادلات دیفرانسیل فازی یک موضوع بسیار مهم از نظریه فازی است که برای مدل بندی کردن فرآیندهای مبهم به کاربرده? می شود. با توجه به تعاریف متفاوت مشتق توابع فازی، روشهای گوناگونی برای حل این دسته از معادلات ارایه شده اند.? مشتق تعمیم یافته که در این تحقیق به آن پرداخته می شود یکی از مناسب ترین تعاریف مشتق برای بررسی بهتر پدیده های غیرقطعی است. که در این پایان نامه ضمن معرفی این مشتق برای توابع با ...
15 صفحه اولبررسی معادلات انتگرال دیفرانسیل فازی غیر خطی و جواب جدید معادلات دیفرانسیل فازی خطی با استفاده از مشتق های تعمیم یافته قوی
معادلات انتگرال دیفرانسیل در مدل بندی مسائلی کاربردی چون انتقال گرما، پدیده انتشار و پخش نوترون مورد استفاده قرار می گیرند و نیز در برخی کاربردهای فیزیک و زیست شناسی و مهندسی استفاده وافر دارند و به تبع آن معادلات انتگرال دیفرانسیل فازی نیز مورد توجه قرار گرفته اند. معادله انتگرال دیفرانسیل غیر خطی زیر را در نظر می گیریم. در صورتی که توابع معلوم a(t)و k(t,s,x(t)) و f(t,x(t)) توابعی ف...
15 صفحه اولروش هاى چند گامی مستقل از مشتق برای حل عددی معادلات غیر خطی
در این مقاله٬ خانوادهای از روشهای چند گامی کارا و مستقل از مشتق را برای حل عددی معادلات غیرخطی بیان میکنیم. این روشهای چند گامی مبتنی بر چند جمله ای درونیاب نیوتن و روش تجزیه آدومیان[1] بهبود یافته میباشند. مرتبه همگرایی این روشها را محاسبه میکنیم و با استفاده از چند مثال کارایی روشهای چند گامی مستقل از مشتق را نشان میدهیم.
full textبررسی دو رده از معادلات دیفرانسیل فازی با استفاده از مشتق تعمیم یافته
در این پایان نامه قصد داریم به کمک مشتق تعمیم یافته دو رده از مسائل مربوط به معادلات دیفرانسیل فازی را مورد بررسی قرار دهیم که عبارتند از: 1. حل معادلات دیفرانسیل مرتبه اول فازی به کمک فرمول تغیراتی ثابت 2.بررسی وجود جواب مسأله مقدار مرزی برای معادلات دیفرانسیل مرتبه دوم فازی در واقع با استفاده از مفهوم مشتق تعمیم یافته جواب های جدیدی را که منطبق بر رفتار واقعی سیستم های وابسته به این معا...
مطالعه روش های عددی برای حل معادلات دیفرانسیل جزیی فازی
دراین پایان نامه روش های عددی برای حل معادلات دیفرانسیل جزیی فازی بحث می شود. ابتدا تعاریف لازم را بیان می کنیم سپس روش های عددی برای حل این نوع معادلات که شامل روش تفاضلات متناهی، روش حجم متناهی و روش تجزیه آدومیان است را بررسی می کنیم. شرایط لازم برای پایداری و همگرایی در بعضی روش ها بیان می شود.
15 صفحه اولMy Resources
document type: thesis
دانشگاه تربیت معلم - تبریز - دانشکده علوم پایه
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023